
Spectral statistics for unitary transfer matrices of binary graphs

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 3567

(http://iopscience.iop.org/0305-4470/33/18/304)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 3567–3585. Printed in the UK PII: S0305-4470(00)10044-7

Spectral statistics for unitary transfer matrices of binary
graphs

Gregor Tanner
School of Mathematical Sciences, Division of Theoretical Mechanics, University of Nottingham,
University Park, Nottingham NG7 2RD, UK

E-mail: gregor.tanner@nottingham.ac.uk

Received 2 December 1999

Abstract. Quantum graphs have recently been introduced as model systems to study the spectral
statistics of linear wave problems with chaotic classical limits. It is proposed here to generalize this
approach by considering arbitrary, directed graphs with unitary transfer matrices. An exponentially
increasing contribution to the form factor is identified when performing a diagonal summation over
periodic orbit degeneracy classes. A special class of graphs, so-called binary graphs, is studied in
more detail. For these, the conditions for periodic orbit pairs to be correlated (including correlations
due to the unitarity of the transfer matrix) can be given explicitly. Using combinatorial techniques
it is possible to perform the summation over correlated periodic orbit pair contributions to the form
factor for some low-dimensional cases. Gradual convergence towards random matrix results is
observed when increasing the number of vertices of the binary graphs.

1. Introduction

Universality in spectral statistics has been established numerically and experimentally for a
wide range of linear wave problems ranging from quantum systems (Bohigas et al 1984) to
acoustic (Ellegaard et al 1996) and microwave cavities (Alt et al 1997, 1999) in two and
three dimensions as well as quantum maps (Saraceno and Voros 1994) and quantum graphs
(Kottos and Smilansky 1997, 1999), see also Guhr et al (1998) for a recent review. The
universality classes are accurately described by random matrix theory (RMT) even though
ensemble averaging is not performed when considering spectra of individual wave problems.
This fundamental puzzle is still not understood and indicates that the RMT limit is reached
under more general conditions than assumed by Wigner, Mehta, Dyson and others (see e.g.
Mehta 1991) in the original derivation of RMT results.

A few basic facts are well established by now: wave systems, whose spectral statistics
follow the RMT result for Gaussian unitary or orthogonal ensemble (GUE or GOE) have in
common that:

(a) time propagation (discrete or continuous) is a linear, unitary transformation;
(b) the dynamics of the underlying classical system is chaotic; this implies in particular that

the system has positive Liapunov exponent and an exponentially increasing number of
periodic orbits; a sufficient condition for chaos is furthermore that the classical Perron–
Frobenius operator has an isolated largest eigenvalue equal to one.

(c) there are no systematic periodic orbit length degeneracies other than those enforced by
the symmetries of the classical dynamics and the unitarity of the wave propagation.

0305-4470/00/183567+19$30.00 © 2000 IOP Publishing Ltd 3567



3568 G Tanner

The last point is kept vague deliberately and refers to systems which fulfil condition (a) and
(b) but are known to deviate from RMT due to number theoretical periodic orbit degeneracies;
examples are the cat map (Hannay and Berry 1980, Keating 1991a, b) and arithmetic billiards
of constant negative curvature (Bogomolny et al 1997). I will come back to this point in the
coming sections.

A direct consequence of (b) is the so-called Hannay–Ozorio de Almeida (HOdA) sum rule
(Hannay and Ozorio de Almeida 1984, Berry 1985), which enables one to derive universality
of the spectral two-point correlation function in the long-range limit. Considerable progress in
understanding the universality of spectral statistics for individual systems beyond the HOdA-
sum rule has been made only recently by studying quantum graphs. In a series of papers
Smilansky and co-workers demonstrated numerically that quantum graphs indeed obey RMT
statistics (Kottos and Smilansky 1997, 1999); they were also able to calculate the full form
factor, i.e., the Fourier transform of the spectral two-point correlation function, in terms of
periodic orbits for a specific set of graphs with 2 × 2 unitary transfer matrices (Schanz and
Smilansky 1999) and reproduced Anderson localization from periodic orbit theory in a similar
model (Schanz and Smilansky 2000). Deviations from universal statistical behaviour for a
special set of graphs—so-called star-graphs—could be explained in leading order by Kottos and
Smilansky (1999), a systematic way to calculate higher order corrections has been developed
by Berkolaiko and Keating (1999).

The main advantage in studying quantum graphs is that one can construct a wide variety
of systems with exact periodic orbit trace formulae (in contrast to, for example, semiclassical
periodic orbit trace formulae, see Gutzwiller 1990). Discrete time propagation on a graph
corresponds to a unitary transformation in terms of a finite-dimensional matrix and periodic
orbit lengths are build up by a finite number of rationally independent length segments. The
exactness of the trace formula circumvents problems due to, for example, semiclassical errors
present in periodic orbit trace formulae for general quantum systems with continuous classical
limit. Semiclassical approximations do in general not preserve unitarity of the quantum
propagation which leads to exponentially growing error terms in the long-time limit (Keating
1994, Tanner 1999). Periodic orbit length correlations beyond the classical HOdA-sum rules
can furthermore be studied in graphs in detail without referring to approximations; such
correlations are predicted to exist due to the presence of spectral universality (Argaman et al
1993).

The quantization procedure for graphs chosen by Kottos and Smilansky (1997, 1999)
implies certain restrictions on the topological structure of the graph. Solving a one-dimensional
Schrödinger equation on the connections (or edges) between vertices with various boundary
conditions calls for the possibility of backscattering; the underlying graph must therefore be
undirected, i.e., the possibility to go from vertex i to vertex j implies that the reversed direction
from j to i also exists.

In the following I will broaden the picture by considering unitary matrices in general. I
will identify a unitary matrix as a transfer matrix (or ‘wave propagator’) on a directed graph
with exact periodic orbit trace formula. The corresponding classical system is, as for quantum
graphs, given by the dynamics on a probabilistic network. Such a construction has a priori, and
again like for quantum graphs, no semiclassical limit in the sense that the classical dynamics
does not remain the same when increasing the matrix dimension (or the size of the graph). This
is, however, not a prerequisite when looking at the conditions (a)–(c); one can indeed easily
construct graphs and corresponding unitary transfer matrices which fulfil the conditions above.
The main motivation in generalizing the concept of quantum graphs lies in the possibility to
study a much wider class of graphs including in particular directed graphs. This freedom
will be used in sections 3 and 4 to consider a special set of graphs, so-called binary graphs.
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Unlike for quantum graphs, the unitary transfer matrix of a directed graph can not be written
as a function of a wavenumber k in general and does not have a quantum spectrum. Like for
quantum maps, one studies instead the statistics of the spectrum of eigenphases of the unitary
matrix.

I will introduce some basic notations for graphs in section 2 and will define edge and
vertex staying rates as well as periodic orbit degeneracy classes. An exponentially increasing
contribution to the form factor is identified when performing a diagonal summation over
degeneracy classes. I will then focus on balanced, directed (binary) graphs with unitary transfer
matrices. The form factor can here be written in terms of a periodic orbit length degeneracy
function. This functions will be derived explicitly for binary graphs with up to six vertices
in section 3. Exponentially increasing contributions to the form factor are identified; these
contributions alternate in sign and balance each other in a delicate way to lead to an expression
for the form factor close to the RMT result. The periodic orbit form factor for graphs with up
to 32 vertices is calculated in section 4 by counting the periodic orbit degeneracies directly.
Convergence of the periodic orbit expressions towards the RMT result is observed for graphs
with and without time reversal symmetry; this gives rise to the hope that a periodic orbit theory
may indeed be able to resolve universality of spectral statistics in the limit of large vertex
numbers.

2. Graphs and unitary transfer matrices

2.1. Introduction and notation

A directed graph (digraph) G consists of set of vertices V (G) connected by a set of edges
E(G). An edge leading from a vertex i to a vertex j , (i, j ∈ V (G)), will be denoted (ij ) and
the ordering of the pair is important. I will mainly deal with directed graphs here and will omit
the specification ‘directed’ in the following. The order of the graph is given by the number of
vertices N = |V (G)|, and M = |E(G)| is the number of edges. A graph can be characterized
by its N × N adjacency matrix A(G) being defined here as

aij =
{

1 if (ij) ∈ E(G)

0 otherwise;

the vertices i, j ∈ V (G) may be labelled from 0 to N − 1 for convenience. A real or complex
N × N matrix T (G) will be a called a transfer matrix of G if

tij = 0 ⇔ aij = 0.

A real transfer matrix T cl(G) which preserves probability, i.e.
N−1∑
j=0

t clij = 1 ∀i ∈ V (G) tij ∈ R (1)

is called a classical transfer matrix in what follows. T cl is the analogue of the classical
transfer or Frobenius–Perron operator for dynamical systems with continuous configuration
space variables and describes the discrete time evolution of an N -dimensional vertex density
vector ρ according to

ρj (n + 1) =
N−1∑
i=0

t clij ρi(n) n ∈ N.

A matrix element t clij corresponds thus to the transition probability going from vertex i to j .
The classical transfer matrix has a largest eigenvalue equal to one; the graph is fully connected
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(or ergodic) if there exists a walk or path from i to j for every vertex i and j . A graph is
‘chaotic’ if the graph is ergodic and the modulus of the second largest eigenvalue is smaller
than one. This means, an initial density vector ρ(0) converges exponentially fast towards an
equilibrium state ρ̃ which is the eigenvector corresponding to the largest eigenvalue of T cl .

A periodic orbit of period n on a graph is a walk on the graph which repeats after n steps.
Each periodic orbit can be labelled in terms of a vertex symbol code (v1v2 . . . vn) = v given
by the vertices vi ∈ V (G) visited along the walk with vivi+1 ∈ E(G),∀i = 1, n − 1 and
vnv1 ∈ E(G). We will denote the set off all periodic orbits of period n as POn(G).

In the following I focus on unitary transfer matrices T . The ‘classical’ dynamics
corresponding to the ‘wave propagation’ on the graph described by the unitary matrix T

is then given by the classical transfer matrix T cl with t clij = |tij |2. The unitarity of T ensures
probability conservation, equation (1), for T cl and the equilibrium state is the uniform density
vector ρ̃ = (1, 1, . . . 1). The complex non-zero matrix elements of T may be written as
tij = rijeiLij and one identifies Lij with the length of an edge (ij ) and r2

ij = t clij is the classical
transition probability.

The conditions (a)–(c) in section 1 are fulfilled if the graph is chaotic and the phases Lij

are not rationally related apart from conditions which have to be fullfilled to ensure unitarity of
the matrix T . The spectrum of T and the periodic orbits in the graph are, furthermore, related
by an exact trace formula; the density of states for the eigenphases {θi}i=1,N of T is given as

d(θ,N) =
N∑
i=1

δ(θ − θi) = N

2π
+

1

π
Re

∞∑
n=1

Tr T ne−inθ (2)

and the traces Tr T n can be written as sum over all periodic orbits of period n in the graph,
i.e. Tr T n = ∑

v∈POn
AveiLv . The amplitude Av is the product over the transition rates rvivi+1

along the path and Lv corresponds to the total length of the periodic orbit.
The spectral measure studied in more detail in this paper is the so-called spectral form

factor K(τ,N); it is the Fourier transformed of the two point correlation function

R2(x,N) = 4π2

N2
〈d(θ) d(θ + 2πx/N)〉

and the average 〈.〉 is taken over the θ -interval [0, 2π ]. The form factor written in terms of
periodic orbits has the form (see e.g. Tanner (1999))

K(τ,N) = 1

N
〈| Tr T n|2〉�τ = 1

N

〈 ∑
v,v′∈POn

AvAv′ei(Lv−Lv′ )
〉
�τ

(3)

with τ taking on the discrete values τ = n/N and further averaging over small intervals �τ

is performed. Most periodic orbits of the graph will be uncorrelated and the corresponding
periodic orbit pair contributions will vanish after performing the τ -average. There are, however,
correlations in the periodic orbit length spectrum which lead to systematic deviations from a
zero mean; the most obvious one is between orbits which are related by cyclic permutation of
the vertex code v. The sum over those pairs of orbits leads, in the same way as for continous
systems, to the HOdA-sum rule and describes the linearized behaviour of K(τ) for τ → 0
(Berry 1985). For graphs, one can, however, immediately identify another class of exactly
degenerate orbits; this is the set of periodic orbits which passes through each edge the same
number of times but not necessarily in the same order. After defining the so-called edge staying
rates qij as the number of times a given orbit v visits a certain edge (ij), i.e.

qij (v) =
n∑

l=1

δi,vl δj,vl+1 (ij) ∈ E(G) v ∈ POn (4)
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one can write the length Lv and the amplitude Av of an orbit v on a graph as

Lv =
∑

ij∈E(G)

qij (v)Lij Av =
∏

ij∈E(G)

r
qij (v)

ij .

Periodic orbits whose symbol string gives rise to the same edge staying rate vector q =
({qij }ij∈E(G)) coincide in length Lv and amplitude Av; these orbits will be called topologically
degenerate. The set of all topologically degenerate orbits will be called a degeneracy class
(Berkolaiko and Keating 1999). The number of orbits in a given degeneracy class represented
by the M dimensional edge staying rate vector q (with M , the number of edges of the graph)
will be denoted the (periodic orbit length) degeneracy function Pn(q;G), i.e.

Pn(q;G) = |{v ∈ POn|qij (v) = qij ,∀ij ∈ E(G)}|. (5)

The orbits related by cyclic permutation of the symbol code are obviously in the same
degeneracy class.

The traces of T which enter the density of states (2) can thus be rewritten as

Tr T n =
∑

q∈Kn(G)

Pn(q)AqeiLq (6)

and Kn(G) ⊂ N
M
0 represents the subset of the M-dimensional integer lattice N

M
0 containing all

the possible edge staying rate vectors q which correspond to periodic orbits of period n of the
graph G. Determining the lattice Kn(G) and thus the possible degeneracy classes as well as
the degeneracy function is the main problem when studying periodic orbit length correlations
on graphs. I will come back to this point in the next section.

The form factor (3) can now be written as double sum over the edge rate vectors q:

K(n,N) = 1

N

〈 ∑
q,q′∈Kn(G)

AqAq′Pn(q)Pn(q
′)ei(Lq−Lq′ )

〉
�τ

. (7)

A new type of diagonal contribution emerges when considering periodic orbit pairs sharing
a common q-vector. The total contribution of topologically degenerate periodic orbit pairs,
which obviously includes the original diagonal contributions in the HOdA-sum rule, is

Ktop(n,N) = 1

N

∑
q∈Kn(G)

A2
qP

2
n (q) ∼ eαtn (8)

which increases in general exponentially, i.e., αt > 0; (the rate αt can be calculated using
large deviation techniques (Dembo and Zeitouni 1993), strict upper and lower bounds are
0 � αt � ht , and ht is the topological entropy for the graph). All the contributions to Ktop

are positive in accordance with a result obtained by Whitney et al (1999) using diagrammatic
techniques for periodic orbit formulae. The diagonal approximation Ktop ∼ n

N
following from

the HOdA-sum rule is valid only for small τ = n
N

when cyclic permutation is the main source
of degeneracies. (This is in general the case for those n values for which the majority of orbits
visits a given edge at most once.)

Unitarity of the underlying T matrix implies the asymptotic result limτ→∞ K(τ,N) = 1;
the exponentially increasing topological contributions Ktop must therefore be counterbalanced
by additional correlations in the periodic orbit length spectrum. We will show that these kind
of correlations originate from the unitarity of the T matrix and that the cancelation mechanism
is extremely sensitive leaving little space for approximate or asymptotic treatments.

All what has been said so far is true for arbitrary unitary matrices, and thus especially for
transfer matrices of quantum graphs and also for general quantum maps. In order to study the
phenomenon of periodic orbit correlations due to unitarity more closely, I will now focus on
a special class of chaotic graphs with uniform transition probabilities for which all relevant
periodic orbit correlations can be given explicitly.
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2.2. Binary graphs and periodic orbit correlations

One of the simplest, non-trivial class of graphs are balanced, directed binary graphs BN ; these
are connected graphs withN vertices (N even) for which each vertex has exactly two incoming
and two outgoing edges. The adjacency matrix AN of a binary graph can be written in the
form

aij =
{
δ2i,j + δ2i+1,j for 0 � i < N

2

δ2i−N,j + δ2i+1−N,j for N
2 � i < N

i = 0, . . . , N − 1 (9)

and the number of edges of BN is M = 2N . Some examples together with their adjacency
matrices are shown in figures 2, 4, and 5. It will sometimes be useful to switch from a vertex
code to an edge code. A suitable choice is to assign each edge ij corresponding to a non–zero
matrix element of the adjacency matrix (9) an edge code

ie = 2i + jmod 2 ie = 0, 1 . . . , 2N − 1. (10)

The edge code will be used when deriving periodic orbit length degeneracies in section 3 and
in the appendix.

Transfer matrices of binary graphs have been studied in connection with combinatorial
problems for binary sequences (Stanley 1999), as well as the semiclassical quantization of the
Anisotropic Kepler problem using binary symbolic dynamics (Gutzwiller 1988, Tanner and
Wintgen 1995) and have been discussed in the context of general quantum maps (Bogomolny
1992). Saraceno (1999) recently proposed a quantization scheme for the baker map which
also leads to quantum maps of the form (9).

Binary graphs with adjacency matrices (9) are connected, i.e., each vertex can be reached
from every other vertex, here after at least [log2 N ]+1 steps. The topological entropyht = log 2
independent of the order of the graph. The subset of binary graphs of order N = 2k, k ∈ N, the
so-called de Bruijn graphs (Stanley 1999), deserves special attention; the dynamics on these
graphs can directly be related to the set of all binary sequences and there exists a one-to-one
relation between finite binary symbol strings (a1, a2, . . . an), ai ∈ {0, 1} of length n and the
periodic orbits of the graph, i.e.

(a1, a2, . . . an) ↔ (v1, v2, . . . vn) ai ∈ {0, 1} vi ∈ {0, 2k − 1}
with

vi =
k∑

j=1

ai+j−12k−j and ai+n = ai

for graphs of order N = 2k . The number of orbits of period n on these graphs is exactly 2n.
I will consider unitary transfer matrices of binary graphs next. The unitarity condition

for a transfer matrix TN of a binary graph with adjacency matrix (9) can be stated simply by
demanding unitarity for the N/2 different 2 × 2 matrices ui with

ui =
(

ti,2i ti,2i+1

ti+ N
2 ,2i

ti+ N
2 ,2i+1

)
i = 0, 1, . . . , N/2 − 1. (11)

Next, I will consider the special case of uniform local spreading, i.e., I will look at unitary
binary transfer matrices with |tij | = 1/

√
2 for all non-zero matrix elements of TN . This

simplifies the unitarity conditions for the matrices (11) considerably which can now be written
in terms of phase correlations only. One obtains the following relation between the lengths of
edges:

[(Li,2i + Li+ N
2 ,2i+1) − (Li,2i+1 + Li+ N

2 ,2i
)] mod 2π = π i = 0, 1, . . . , N/2 − 1 (12)
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Figure 1. Local network of correlated edge lengths, see equation (12);
opposite edges form a pair, the two pairs have a combined length
difference of π .

the corresponding local network is shown in figure 1. The unitary condition (12) will be shown
to be responsible for the periodic orbit correlations relevant to balance out the exponentially
increasing topological contributions to the form factorK(τ,N). Its simplicity makes it possible
to turn the problem of finding periodic orbit length correlations into a combinatorial problem
of finding all exact periodic orbit degeneracies (up to phase differences being a multiple of π ),
which can be solved in principle.

The dynamics described by the corresponding classical transfer matrix with constant
transition probabilities t clij = 1

2 is maximally mixing for binary graphs of the form (9). This
means that the topological entropy ht equals the Kolmogorov entropy K , one finds here
ht = K = log 2 (see e.g. Schuster (1989) for exact definitions); conditions (a)–(c) in section 1
are thus satisfied as long as there are no systematic edge length correlations present except
from those introduced through equation (12). One can furthermore show that the generalized
diagonal contribution (8) increases exponentially with a rate αt = ht = log 2 independent of
the order of the binary graph.

Periodic orbit correlations introduced through equation (12) can be expressed in terms
of edge and vertex staying rates. The vertex staying rates q̃i (v) of an orbit v of length n are
defined analogous to (4) as the number of times a periodic orbit visits a vertex i, i.e.

q̃i (v) =
∑
l=1,n

δi,vl i ∈ V (G). (13)

Vertex and edge staying rates are connected by conservation laws (or shift invariance properties
(Dembo and Zeitouni 1993)) of the form

qi,2i + qi,2i+1 = q[ i
2 ],i + q[ i

2 ]+ N
2 ,i

= q̃i ∀i = 0, . . . ,
N

2
− 1

qi,2i− N
2

+ qi,2i− N
2 +1︸ ︷︷ ︸

incoming edges

= q[ i
2 ],i + q[ i

2 ]+ N
2 ,i︸ ︷︷ ︸

outgoing edges

= q̃i ∀i = N

2
, . . . , N − 1 (14)

and [.] denotes the integer part. A direct consequence of (12) and (14) is the following
condition for periodic orbit correlations: all periodic orbits having the same vertex staying
rates q̃ = (q̃0, . . . , q̃N−1) differ in length exactly by a multiple of π .

This can be shown by noting that for two orbits v, v′ ∈ POn(BN) with �q̃ =
q̃(v) − q̃(v′) = 0, one obtains

�qi,2i + �qi,2i+1 = 0 �qi,2i + �qi+ N
2 ,2i

= 0 �qi+ N
2 ,2i+1 + �qi+ N

2 ,2i
= 0

see also figure 1. One therefore has

�qi,2i = �qi+ N
2 ,2i+1 = −�qi,2i+1 = −�qi+ N

2 ,2i
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which together with (12) yields

�L = Lv − Lv′ = π

N/2−1∑
i=0

�qi,2i . (15)

The corresponding contribution of the periodic orbit pair to the form factor (3) is then

(−1)dv,v′ 2−n with dv,v′ =
N/2−1∑
i=0

�qi,2i .

Note that the amplitudes Av equal 2−n/2 for all orbits of period n.
The form factor can thus be written as a sum over weighted correlations of the degeneracy

function (5), i.e.

K(n,N) = 1

N

1

2n

∑
q̃∈K̃n(BN )

( ∑
q

∑
q′
(−1)

∑
i �qi,2i Pn(q)Pn(q

′)
)

= 1

N

1

2n

∑
q̃∈K̃n(BN )

( ∑
q

(−1)[
∑

i qi,2i ]Pn(q)

)2

(16)

and [.] denotes the integer part. The sum is taken over theN -dimensional integer lattice K̃n(BN)

of possible vertex staying rate vectors q̃ corresponding to periodic orbits of period n of a binary
graph BN ; the vectors q, q′ correspond here to the N/2 components (qi,2i )i=0,...,N/2−1 of the
total edge staying rate vector only. The contributions of periodic orbit pairs which are not
correlated by having length differences of a multiple of π will give a random background con-
tribution which will be neglected from now on. I will instead concentrate on the contributions
from correlated periodic orbit pairs only.

Before turning to the problem of calculating degeneracy functions, a few remarks on edge
staying rates seem appropriate here. The components of the edge staying rate vector q are
related to each other by the shift invariance properties (14). These are N conditions which
can be shown to lead to N − 1 independent equations for the 2N rates qij ; together with the
restriction

N−1∑
i=0

q̃i = n (17)

for orbits of period n, one can write the edge staying rates in terms ofN independent quantities,
which effectively allows to half the dimension of Kn(BN). The length degeneracy functions
Pn depends thus on N independent variables only.

There are further restrictions on the independent components of q. Apart from the obvious
condition qij � 0 ∀ij ∈ E(BN), one must also ensure that the sum over the N independent
components of q does not exceed n and that the staying rates do correspond to a connected,
closed path on the graph. An example for an edge staying rate vector q violating the last
restriction is q = (q00, 0, . . . , 0, qN−1,N−1)with q00 �= 0 and qN−1,N−1 �= 0 which corresponds
to two disconnected periodic orbits. I will come back to the problem of determining the lattice
Kn in more detail in the next section.

3. Periodic orbit length degeneracy functions—analytic results

The periodic orbit length correlations in binary graphs with constant transition amplitudes can
be completely described in terms of the degeneracy function (5). The problem of calculating
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Figure 2. Binary graph of order 2 together with its adjacency matrix A.

the form factor is thus converted to a combinatorial problem of finding the number of closed
(connected) paths on a graph which visit each edge the same number of times. This problem
can be treated explicitly for low-dimensional graphs; results for binary graphs up to order 6
will be presented here.

3.1. Binary graphs of order N = 2

The case N = 2 has already been treated by Schanz and Smilansky (1999) in somewhat
different circumstances†. We will re-derive some of the results in order to introduce the basic
notations and concepts which will be useful when considering binary graphs for N > 2. Some
new asymptotic results for the two-dimensional case will also be presented here.

A binary graph of order 2 is shown in figure 2. The shift invariance property, equation (14),
implies the following conditions for the edge staying rate vector q = (q00, q01, q10, q11), i.e.

q̃0 = q00 + q01 = q10 + q00

q̃1 = q11 + q10 = q01 + q11
(18)

and q̃0, q̃1 represent the vertex staying rates. After choosing q00 and q11 as independent
variables and together with the condition (17), one obtains

q01 = q10 = 1
2 (n − q00 − q11)

q̃0 = 1
2 (n + q00 − q11)

q̃1 = 1
2 (n − q00 + q11)

(19)

for orbits of period n.
The periodic orbit length degeneracy function Pn(q00, q11) can be derived by starting with

the special case q00 = q11 = 0. One immediately obtains Pn(0, 0) = 2 for n even; the two
periodic orbits correspond to the n

2 th repetition of the primitive periodic orbits 01 and 10 of
period 2. It is advantageous to switch to an edge symbol code, i.e., to identify

00 → 0e 01 → 1e 10 → 2e 11 → 3e
see also equation (10) and figure 2. The two orbits 01 and 10 can then be written as

1e2e1e2e . . . 1e2e︸ ︷︷ ︸
n

and 2e1e2e1e . . . 2e1e︸ ︷︷ ︸
n

. (20)

The symbol 0e can only occur after the symbol 2e and it can be repeated. A periodic orbit of
period n + q00 can thus be obtained by inserting q00 symbols 0e in between the 2e12 blocks
in the periodic orbit sequences (20). Symbols 0e can be placed at n

2 + 1 positions for the first
orbit in (20) and n

2 positions for the second orbit. Similar arguments apply for inserting q11

symbols 3e into the sequences (20). Using standard combinatorial formulae to find the number
of combinations to distribute q00 items among n

2 + 1 or n
2 boxes with repetitions, one obtains

Pn+q00+q11(q00, q11) =
(

n
2 + q00

q00

) (
n
2 + q11 − 1

q11

)
+

(
n
2 + q00 − 1

q00

) (
n
2 + q11

q11

)
.

† Schanz and Smilansky (1999) analysed unitary 2 × 2 matrices in connection with simple quantum (star-) graphs.
The unitary transfer matrices considered have the extra constraint L01 = L10. It can, however, be shown that this
conditions does not lead to additional periodic orbit length correlations, see also section 4.
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After rescaling (n + q00 + q11) to n and using the relations (19) one may write the degeneracy
function as

Pn(q00, q11) = n

q01

(
q̃0 − 1
q00

) (
q̃1 − 1
q11

)
. (21)

The possible integer values for q00 and q11 have to obey certain restrictions which follow
directly from (19), i.e.

q00 + q11 < n and (n − q00 − q11) mod 2 = 0. (22)

The degeneracy function (21) approaches a Gaussian distribution in the limit n → ∞; its form
can be derived with the help of large deviation techniques (Dembo and Zeitouni 1993), i.e. one
obtains

Pn(q00, q11) ∼ 4

πn
2ne−n(4x2+y2)

with x = 1

n
√

2

(
q00 + q11 − n

2

)
y = 1

n
√

2
(q00 − q11). (23)

The asymptotic result (23) is too crude to be useful in a calculation of the form factor directly; it
does provide, however, some insight into the asymptotic behaviour of the various contributions
entering the form factor. Especially the contributions of topologically degenerate periodic orbit
pairs, see equation (8), can be estimated to be

Ktop(n) ∼ 1

2n+1

∫ ∫
dq00 dq11P

2
n (q00, q11) = 2n

πn

and one obtains αt = log 2 for the growth rate of the diagonal contributions (8). Periodic orbit
pairs being degenerate up to a phase difference mπ enter the form factor asymptotically as

Km(n) ∼ (−1)m

2n+1

∫ ∫
dq00 dq11Pn(q00, q11)Pn(q00 + m, q11 + m) = (−1)m

2n

πn
e−4 m2

n .

The form factor thus consists of an increasing number of exponentially growing terms which
differ in sign (see also figure 3). Only a very delicate balance between these terms ensures
the cancelations necessary to lead to the asymptotic behaviour limn→∞ K(n) = 1. The
approximations above are indeed not sufficient to preserve the asymptotic limit and give
exponentially growing terms for large n; similar arguments might hold for the breakdown
of semiclassical approximations to quantum form factors, see e.g. Tanner (1999). Note also,
that the diagonal terms relevant for the HOdA-sum rule do not play a prominent role in the
discussion above; they give a linear contribution to Ktop which is already sub-dominant for
moderate n values.

The periodic orbit pair contributions to the form factor can be computed explicitly by
summing the exact length degeneracy function (21) over the possible edge staying rates
obtained from conditions (22). It may be written in compact form in the following way
(Schanz and Smilansky 1999):

K(n) = 1

2n+1

[
2 +

n−1∑
q̃0=1

( n
2 −| n2 −q̃0|)∑
q01=1

(−1)q01Pn(q00, q11)

)2]
= 1 +

(−1)n+l

22l+1

(
2l
l

)
(24)

with l = [n/2] and q̃0, q01 can be expressed in terms of q00, q11 using (19). It is a remarkable
fact that the sum can be determined explicitly, a result derived by Schanz and Smilansky
(1999) using quantum graph techniques. The form factor, equation (24), is displayed in
figure 3 together with the asymptotic results. K(n) approaches 1 in the large-n limit, but
is different from the RMT result for 2 × 2 matrices. The periodic structure can be seen to
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Figure 3. The form factor for binary graphs of order 2 (dotted line with +) is shown as function
of τ = n

2 ; the partial sums Km contribute with alternating signs starting at τ = m + 1; (the dashed
lines correspond to Km + 1 for m > 0). The GUE form factor is also displayed for comparison.

coincide with the start of a new family of degenerate orbits and is thus a remnant of non-perfect
cancelations of the various Km(n) contributions. Convergence of the correlated periodic orbit
pair contributions to the RMT result is observed when increasing the order N of the binary
graph as will be shown in the following sections.

3.2. Binary graphs of order N = 4 and N = 6

The edge and vertex staying rates of periodic orbits of a binary graph of order N = 4, see
figure 4, can be written in terms of four independent variables. A possible choice for the edge
staying rates is q00, q12, q21 and q33. The other edge and vertex rates can be computed by using
equations (14), explicit formulae are given in the appendix.

The periodic orbit length degeneracy function can be obtained by arguments similar to the
one described in the last section. The discussion is somewhat technical and is referred to the
appendix. The final result is

Pn(q00, q12, q21, q33) = n

q̃1

(
q̃1

q01

) (
q̃2

q21

) (
q̃0 − 1
q00

) (
q̃3 − 1
q33

)
(25)

and q̃i denotes again the vertex staying rates. The possible entries on the four-dimensional
integer q lattice can be stated by conditions similar to those in equation (22). Periodic orbits
which differ in length by a multiple of π have the same vertex staying rates but may differ in
the variables

s0 = q00 + q21 s1 = q12 + q33. (26)

The length difference for orbits with identical vertex rates is given by �L = 1
2 (�s0 + �s1)π ,

see equation (15). The form factor can be written in terms of degenerate periodic orbit pairs
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Figure 4. Binary graph of order 4 together with its adjacency matrix A.

Figure 5. Binary graph of order 6 together with its adjacency matrix A.

only and one obtains

K(n) = 1

4

1

2n

(
2 +

n−1∑
q̃0+q̃1=1

( n2 −| n2 −q̃0−q̃1|)∑
q̃1=1

( s0+s1<n∑
s0=|q00−q21|,s1=|q12−q33|

(−1)[ s0+s1
2 ]Pn(q)

)2)
. (27)

The form factor K(τ) with τ = n/4 obtained from equation (27) is shown in figure 6. It
oscillates periodically with decreasing amplitude about the RMT result similar to the behaviour
observed in the case N = 2, see figure 3. A closed expression for the sum similar to
equation (27) could not be found.

The sums in (27) are already quite cumbersome and the number of summation variables
increases with the order N . The number and complexity of the restrictions for the q-lattice
Kn(BN) increases accordingly. The case N = 6 can, however, still be treated along the ideas
developed above; it will be presented here as a last example for obtaining the form factor by
summing over the periodic orbit length degeneracy function.

The binary graph of order N = 6 is shown in figure 5. A possible choice for the
independent edge staying rates is q00, q13, q24, q31, q42, and q55. The derivation of the
degeneracy function can again be found in the appendix, the final result is

Pn(q) = nq12

q̃2q̃3

(
q̃1

q31

) (
q̃2

q42

) (
q̃3

q13

) (
q̃4

q24

) (
q̃0 − 1
q00

) (
q̃5 − 1
q55

)
. (28)

The vertex rates q̃i and the edge rate q12 entering (28) can be expressed in terms of the
independent variables q = (q00, q13, q24, q31, q42, q55), see the appendix. The summation
over the six-dimensional lattice Kn(B6) of possible q vectors can be stated in terms of the
vertex staying rates and the variables

s0 = q00 + q31 s1 = q12 + q43 s2 = q24 + q55.

The expression for the form factor as sum over degenerate periodic orbit pairs is thus

K(n) = 1

6

1

2n

n∑
q̃0=1

[(n−q̃0)/2]∑
q̃1=0

[(n−q̃0−2q̃1)/2]∑
q̃2=0

( (s0+s1+s2)<n∑
s0,s1,s2

(−1)[ s0+s1+s2
2 ]Pn(q)

)2

(29)
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Figure 6. Periodic orbit pair contributions to the form factor for binary graphs of order N = 4
and 6.

and the inner sum runs over all possible si , i = 0, 1, 2 values. The form factor K(τ) after
summing equation (29) is displayed in figure 6 with τ = n/6. The sums, equations (27)
and (29), follow the RMT result more closely than in the N = 2 case, see figure 3. The linear
behaviour for τ < 1 starts to emerge and convergence to the asymptotic result K → 1 is
observed in the large τ = n/N limit.

Larger matrices have to be considered in order to test convergence of degenerate periodic
orbit pair contributions towards the RMT form factor for all τ . Determining the degeneracy
function and the lattice conditions Kn(BN) becomes increasingly difficult for graphs of order
N > 6. In the next section, I will therefore present results obtained from counting all correlated
periodic orbit pair contributions directly.

4. Periodic orbit pair contributions to the from factor for de Bruijn graphs of order
N � 8

The periodic orbit pair contributions to the form factor can be calculated directly by determining
the set of periodic orbits of given period n and calculating periodic orbit degeneracies with
the help of edge and vertex staying rates and the condition (15). The task of finding the set of
periodic orbits is especially simple for de Bruijn graphs, i.e. for binary graphs of order N = 2r ,
due to the one-to-one relation between periodic orbits and finite binary symbol strings, see
section 2.2.

Counting the periodic orbit pair degeneracies explicitly does, however, seriously limit
the range of periods over which periodic orbit correlations can be considered. Due to the
exponential increase in the number of orbits only values up to n ≈ 26 could be reached. This
in turn sets an upper bound on the τ = n/N values for which the form factor can be studied.

GUE results. Results for N = 8, 16 and 32 and no further symmetry present are shown in
figure 7. One observes a convergence of the periodic orbit pair contributions to the GUE result;
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Figure 7. Periodic orbit pair contributions to the form factor for binary graphs of order N = 8, 16
and 32. The small-τ behaviour is dominated by exponentially increasing topological contributions
(dashed lines).

the kink at τ = 1 is resolved for binary graphs of order N = 16; the periodic orbit results
follows the linear behaviour for τ < 1 even closer for N = 32. It was not possible to extend
the results for n = 32 to the critical time τ = 1 due to the restrictions on the available n values.
The small-τ behaviour is dominated by the exponentially increasing topological contributions,
see figure 7. The so-called diagonal contributions due to cyclic permutations of periodic orbit
codes are important only in the small-τ regime, i.e. τ ∼ log2(N)/N , before vertex exchange
degeneracies set in.

GOE results. So far only unitary transfer matrices without symmetries have been considered.
Symmetries in the dynamics impose additional correlations on periodic orbit length spectra and
do have an effect on the spectral statistics. Time reversal symmetry is of special importance
as it occurs frequently in physical systems; correlations due to time reversal symmetry are in
addition non-trivial leading to a form factor which is not piecewise linear as in the GUE case;
only the linear behaviour for K(τ) in the limits τ → 0 and τ → ∞ is understood in terms of
semiclassical arguments (Berry 1985).

It is a priori not clear how to establish time reversal symmetry for the dynamics on an
arbitrary directed graph. Time reversal symmetry can, however, be constructed for de Bruijn
graphs of order N = 2k using the underlying binary symbolic dynamics and the edge code,
equation (10). One identifies each edge ie, ie = 0, 1, . . . , 2k+1 with a binary symbol string
(a1, . . . ak+1) = a of length k + 1 through the relation ie = ∑k+1

l=1 al(ie)2
k+1−l and al ∈ {0, 1}.

Time reversal symmetry can be established by identifying length and amplitudes Lie , rie of
edges ie and i ′e if the corresponding binary code is related through time reversal symmetry, i.e.,

Lie = Li ′e rie = ri ′e if a(ie) = a(i ′e) (30)

and a denotes the code s a written backwards. The condition, equation (30), and the unitarity
condition, equation (12), are the only sources of correlation in the periodic length spectrum.
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Figure 8. Periodic orbit pair contributions to the form factor for binary graphs of order N = 8, 16,
and 32 and time reversal symmetry.

Time reversal symmetry does not effect graphs of the order N � 8, N = 2k . This is
due to the fact that the edge staying rates for a given edge and its time reversed partner are
related by conservation laws (14) such that there are no further degeneracies for these low-
dimensional cases due to condition (30). One finds for N = 2, for example, that q01 = q10

and a periodic orbit and its time reversed partner are always in the same degenaracy class, i.e.,
the condition (30) is automatically fulfilled†.

Results for graphs with time reversal symmetry are shown in figure 8; the case N = 8 is
indeed identical to the non-time reversal symmetric result in figure 7. The results for N = 16
and 32 are, however, different from those in figure 7; the periodic orbit pair contributions
approach the GOE result and not the GUE form factor with increasing N . The condition (30)
does therefore introduces new correlations among periodic orbits for N > 8 which are beyond
the additional topological degeneracy between an orbit and its time reversed partner giving
rise to a factor 2 in the HOdA-diagonal approximation. Note also the exponentially increasing
components for small τ due to topological degeneracies similar to those in figure 7.

5. Conclusions

Degeneracies in the length spectrum of periodic orbits of generic directed graphs have been
studied. Transition rates and edge lengths in the graph are identified as amplitudes and phases of
matrix elements of complex transition matrices. General concepts like edge and vertex staying
rates as well as the periodic orbit length degeneracy function have been introduced. The form
factor can be written in terms of the degeneracy function revealing an exponentially increasing
‘diagonal contribution’ due to topologically degenerated orbits. Topological degeneracies
exist independently of the actual choice of length segments on the graph (defined through the

† The unitary 2 × 2 matrices studied by Schanz and Smilansky (1999) do thus correspond to time reversal symmetric
(binary) graphs.
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transition matrix) and are a purely ’classical’ effect depending only on the topology of the
graph. Further correlations amongst orbits are introduced when considering unitary transfer
matrices.

These correlations have been studied for a particular simple class of graphs, so-called
binary graphs with constant transition amplitudes. The correlations can be given explicitly in
terms of edge and vertex staying rates. One finds in particular that periodic orbits which have
the same vertex staying rates differ in length by exactly a multiple of π . Finding the periodic
orbit degeneracy function turns into a combinatorial problem which has been solved for binary
graphs with up to six vertices.

The form factor can be shown to consist of exponentially increasing contributions which
balance in a very delicate way to give limτ→∞ K(τ) = 1. The periodic orbit sums also reveal
convergence towards the RMT result for intermediate τ -values when increasing the order of the
graph, both for time reversal and non-time reversal symmetric binary graphs. Binary graphs
may thus turn out to be an ideal model systems to study the connection between periodic orbit
formulae and random matrix theory. All periodic orbit correlations are known explicitly and
eigenvalue statistics seems to follow generic random matrix behaviour in the large-N limit.
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Appendix: Periodic orbit length degeneracy function for binary graphs: exact results

The expressions for periodic orbit length degeneracy functions for binary graphs of order
N = 4 and 6, equations (25) and (28), will be derived here.

The case N = 4. As for binary graphs of order N = 2 discussed in section 3.1, it is useful to
switch to an edge symbol code, see equation (10); adopting the vertex symbol code of figure 4,
one defines the edges as

00 → 0e 01 → 1e 12 → 2e 13 → 3e
20 → 4e 21 → 5e 32 → 6e 33 → 7e.

A suitable set of independent edge staying rates is q0e , q2e , q5e , q7e and I will drop the subscript
e as long as there is no confusion with the vertex code. The remaining edge and vertex staying
rates for periodic orbits of period n can be written in terms of the edge staying rates above with
the help of equations (14), i.e., one obtains

q1 = q4 = 1
4 (n − q0 + q2 − 3q5 − q7)

q3 = q6 = 1
4 (n − q0 − 3q2 + q5 − q7)

(A.1)

for the edge rates and

q̃0 = 1
4 (n + 3q0 + q2 − 3q5 − q7)

q̃1 = q̃2 = 1
4 (n − q0 + q2 + q5 − q7)

q̃3 = 1
4 (n − q0 − 3q2 + q5 + 3q7)

(A.2)

for the vertex staying rates q̃i and the index i denotes the vertex code, here.
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The periodic orbit length degeneracy function Pn(q0, q2, q5, q7) can be computed by
starting from

Pn

(
0,

n

2
,
n

2
, 0

)
= 2 for n even;

the set of edge staying rates above corresponds to the orbits of length n with edge symbol code

2 5 2 5 . . . 2 5 and 5 2 5 . . . 2 5 2. (A.3)

One proceeds by noting that an edge symbol ‘2’ in the sequences (A.3) can be replaced by the
sequence ‘3 6’ to give an orbit of length n + 1. Similarly one may substitute a symbol ‘5’ by
the sequence ‘4 1’. Replacing m symbols ‘2’ and k symbols ‘5’, m, k � n

2 , one obtains

Pn+m+k

(
0,

n

2
− m,

n

2
− k, 0

)
= 2

(
n
2
m

) (
n
2
k

)
+

(
n
2 − 1
m − 1

) (
n
2
k

)
+

(
n
2
m

) (
n
2 − 1
k − 1

)
and the last two terms in the sum come from orbits which start with a symbol ‘6’ or a symbol ‘1’,
respectively. After replacing n+m+ k by the new periodic orbit length n′, i.e., n = n′ −m− k

and writing q̃1 = 1
4 (n

′ + q2 + q5) with q2 = 1
2 (n

′ − 3m− k), q5 = 1
2 (n

′ −m− 3k) one obtains

Pn′(0, q2, q5, 0) = 2

(
q̃1

m

) (
q̃1

k

)
+

(
q̃1 − 1
m − 1

) (
q̃1

k

)
+

(
q̃1

m

) (
q̃1 − 1
k − 1

)
. (A.4)

Next, one notes that an edge symbol ‘0’ or ‘7’ can be inserted between any symbol ‘4’ and ‘1’
or ‘3’ and ‘6’, respectively, to obtain a periodic orbit of length n′ + 1. Inserting q0 symbols ‘0’
and q7 symbols ‘7’ into k sequences ‘4 1’ and m sequences ‘3 6’ (with repetition) leads to

Pn′+q0+q7(q0, q2, q5, q7) = 2

(
q̃1

m

) (
q̃1

k

) (
m + q7 − 1

q7

) (
k + q0 − 1

q0

)

+

(
q̃1 − 1
m − 1

) (
q̃1

k

) (
m + q7

q7

) (
k + q0 − 1

q0

)

+

(
q̃1

m

) (
q̃1 − 1
k − 1

) (
m + q7 − 1

q7

) (
k + q0

q0

)
.

After rescaling to the new periodic orbit length n′′ = n′ + q0 + q7 and summing the three
contributions, one obtains

Pn′′(q0, q2, q5, q7) = n′′

q̃1

(
q̃1

m

) (
q̃1

k

) (
m + q7 − 1

q0

) (
k + q0 − 1

q7

)
(A.5)

with q̃1 = 1
4 (n

′′ − q0 + q2 + q5 − q7) as in (A.2). The final result (25) is obtained after noting
that m = q3 = q6 = q̃1 − q2 and k = q1 = q4 = q̃1 − q5. Special care has to be taken in the
case q0 = 0 or q7 = 0.

The case N = 6. The periodic orbit length degeneracy function for N = 6 can be derived
by ideas similar to those outlined for N = 4; I will sketch the main steps here and leave the
details to the reader.

An edge symbol code is defined starting from the vertex symbol code used in figure 5 to
be

0 0 → 0e 0 1 → 1e 1 2 → 2e 1 3 → 3e

2 4 → 4e 2 5 → 5e 3 0 → 6e 3 1 → 7e

4 2 → 8e 4 3 → 9e 5 4 → 10e 5 5 → 11e.
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A suitable set of independent edge staying rates is q0e , q3e , q4e , q7e , q8e , q11e and I will drop the
subscript e from now on. The other edge staying rates of orbits of period n are then given by

q1 = q6 = 1
6 (n − q0 + 3q3 + q4 − 5q7 − 3q8 − q11)

q2 = 1
6 (n − q0 − 3q3 + q4 + q7 − 3q8 − q11)

q5 = q10 = 1
6 (n − q0 − 3q3 − 5q4 + q7 + 3q8 − q11)

(A.6)

the vertex rates are

q̃0 = q0 + q1 q̃1 = q̃3 = q2 + q3

q̃2 = q̃4 = q4 + q5 q̃5 = q10 + q11.
(A.7)

A suitable starting point for the periodic orbit length degeneracy function is the periodic
orbit ‘2 4 9 7’ (in edge code) or ‘1 2 4 3’ in vertex code, see figure 5. One obtains

Pn

(
0, 0, q4 = n

4
, q7 = n

4
, 0, 0

)
= 4 for n mod 4 = 0.

A symbol ‘7’ can be followed by a loop ‘3 7’ (with repetition), a symbol ‘4’ may be followed
by a loop ‘8 4’ (with repetitions). Inserting k loops ‘3 7’ and m loops ‘8 4’ into a sequence ‘2
4 9 7 . . .’ of length n − 2k − 2m yields

Pn(0, k, 1
4 (n − 2k + 2m), 1

4 (n + 2k − 2m), l, 0)

= 2

(
1
4 (n + 2k − 2m) − 1

k

) (
1
4 (n − 2k − 2m) − 1

m

)

+

(
1
4 (n + 2k − 2m)

k

) (
1
4 (n − 2k − 2m) − 1

m

)

+

(
1
4 (n + 2k − 2m) − 1

k

) (
1
4 (n − 2k − 2m)

m

)

+

(
1
4 (n + 2k − 2m) − 1

k − 1

) (
1
4 (n − 2k − 2m) − 1

m

)

+

(
1
4 (n + 2k − 2m) − 1

k

) (
1
4 (n − 2k − 2m) − 1

m − 1

)
and the different terms in the sum correspond to a first symbol in the periodic orbit code being
either ‘2’ or ‘9’, ‘7’, ‘4’, ‘3’ or ‘8’, respectively. Next, one notes that every symbol ‘7’ or ‘4’
can be replaced by the sequence ‘6 1’ or ‘5 10’, respectively. I omit the somewhat lengthy
combinatorial expressions here. The full periodic orbit length degeneracy function is finally
obtained after inserting symbols ‘0’ or ‘11’ into the sequences ‘6 1’ or ‘5 10’, respectively,
and summing over the various binomial coefficients.
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